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Appendix C
Design Example-Chopra’s Simplified
Method

C-1. General

a. The design example problem described in
Appendix B will be analyzed using Chopra’s simpli-
fied design response spectrum method. All hand
calculations are included.

b. Definitions of symbols and notations used in
this appendix can be found in the Glossary. Refer to
Appendix B where the values of several parameters
required for the analysis were derived.

C-2. Fundamental Natural Period (Empty
Reservoir/Rigid Foundation)

T1 1.4 Hs/ Es 1.4 (600) / 3.59×106

T1 0.443 sec

C-3. Reservoir Effect on Natural Period

T̃r RrT1

Hs 600 ft Rr from Figure C 1

POOL ELEVATION

NORMAL LOW

H 495 ft 270 ft

H/Hs 0.825 0.450

Rr 1.110 1.000

T̃r 0.492 sec 0.443 sec

C-4. Ratio of Resonant Period of Dam To
Fundamental Period of the Reservoir

Rw T r
1 / T̃r

T r
1 4H /C

C 4720 ft/sec

C-5. Foundation Effect On Natural Period

POOL ELEVATION

NORMAL LOW

H 495 ft 270 ft

T1
r 0.420 sec 0.229 sec

Rw 0.85 0.52

Es/Ef = 3.59 × 106/3.50 × 106 = 1.025

Rf = 1.190 from Figure C-2

T̃1 = RrRfT1

C-6. Effective Damping Factor

POOL ELEVATION

NORMAL LOW

Rr 1.110 1.000

Rf 1.190 1.190

T1 0.443 sec 0.443 sec

T̃1 0.585 sec 0.527 sec

ε̃1

1
Rr

1

(Rf)
3

ε1 εr εf

εf 0.0701 from Figure C3

εr values from Figure C4

POOL ELEVATION

NORMAL LOW

Rr 1.110 1.000

Rf 1.190 1.190

ε1 7.00 % 7.00 %

H/Hs 0.825 0.450

εr 0.0158 0

ε̃1 12.33 % 11.16 %
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Figure C-1. Standard values for Rr, the ratio of fundamental vibration periods of the dam with and without
water. Chopra (1978)

7. Key Dimensions
8. Properties of Concrete Mass

For sectionsy distance above the foundation,

ws = (section width) × 0.155k/ft3

φ = value from Figure C-5 (based ony/Hs)
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Figure C-2. Standard values for Rf , the period
lengthening ratio due to dam-foundation rock inter-
action. Fenves and Chopra (1986)

Figure C-3. Standard values for εf , the added
damping due to dam-foundation rock interaction.
Fenves and Chopra (1986)

y ws (k/ft) φ wsφ wsφ2

dy
(Segment
Height) wsφdy wsφ2dy

600
570
533
495
460
420
345
270
180
90
0

3.10
3.10
8.34

13.70
18.66
24.30
34.92
45.52
58.25
70.97
83.70

1.000
0.829
0.678
0.552
0.459
0.369
0.252
0.162
0.079
0.029
0

3.10
2.56
5.65
7.56
8.56
8.97
8.80
7.37
4.60
2.06
0

3.10
2.13
3.83
4.17
3.93
3.31
2.22
1.19
0.36
0.06
0

30
37
38
35
40
75
75
90
90
90

84.9
151.9
251.0
282.1
350.6
666.4
606.4
538.6
299.7
92.7

78.5
110.3
152.0
141.8
144.8
207.4
127.9
69.8
18.9
2.7

600 ft 3,324.3 1,054.1
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Figure C-5. Standard mode shape and fundamen-
tal period for the dam on a rigid foundation and
empty reservoir. Chopra (1978)

C-9. Hydrodynamic Influence

For sectionsy distance above the foundation,

gp/wH = value from Figure C-6 (based ony/H and
Rw) interpolate Figure C-6 plots forα =
0.75 andα = 0.50 for the requiredα = 0.69
as calculated in Appendix B

w = 0.0624 k/ft3

Hs = 600 ft

gp = [wH(H/Hs)
2] (gp/wH) = CONSTANT ×

(gp/wH)

POOL ELEVATION

NORMAL LOW

H 495 270

Rw 0.85 0.52

CONSTANT 21.02 3.41

NORMAL POOL LOW POOL

y
dy (Seg
Ht)

y
H

gp
wH gp

gp
dywH

y
H

gp
wH gp

gp
dywH

495 1.000 0 0

35 1.75

460 0.929 0.100 2.10

40 4.88

420 0.848 0.144 3.03

75 11.89

345 0.697 0.173 3.64

75 13.24

270 0.545 0.180 3.78 1.000 0 0

90 16.06 6.39

180 0.364 0.177 3.72 0.667 0.142 0.48

90 15.57 11.66

90 0.182 0.169 3.55 0.333 0.117 0.40

90 14.90 9.77

0 0 0.162 3.41 0 0.100 0.34

78.29 27.82
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Figure C-6. Standard values for the hydrodynamic pressure function p for full reservoir; i.e., H/Hs = 1, α =
0.75 and 0.50
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C-10. Generalized Mass, M̃1

M̃1 (Rr)
2M1

M1 (1/g) ⌡
⌠
Hs

0

wsφ
2dy (1/32.2) (1,054.1)

32.74 k sec2/ft

C-11. Generalized Earthquake Force

POOL ELEVATION

NORMAL LOW

Rr 1.110 1.000

M1 40.34 32.74

Coefficient, L̃1

L̃1 L1 (1/g) Fst (H/Hs)
2Ap

L1 (1/g) ⌡
⌠
Hs

0

wsφdy (1/32.2) (3,324.3)

103.2 k sec2/ft

Fst wH 2/2 (0.0624/2)H 2 0.0312H 2

Ap

2
H ⌡

⌠
H

0

gp
wH

dy

C-12. Response Spectrum Acceleration, S̃a

POOL ELEVATION

NORMAL LOW

H 495 270

Fst 7,645 2,274

⌠H gp
⌡0 wH 78.29 27.82

Ap 0.316 0.206

L̃1 154.26 106.15

a. As discussed in Appendix B, the conditions
for this example problem require site specific design

response spectra. However, since this is only for the
purpose of demonstrating Chopra’s simpified method,
the standard design response spectra shown in
Figure 5-2 and Table 5-1 will be assumed to be the
site-specific design response spectra.

b. For both the earthquake load cases, the fun-
damental periodT1 is greater than 0.4 sec; therefore:

Sa = K2Sa(5%)

where

K2 = 1.466 - 0.2895ln(β)

Sa(5%) = value at periodT̃1 obtained by interpolating
Table 6-1 between the appropriate values
of T.

The spectral ordinatesSa are for the design response
spectrum normalized to a PGA = 1 g. These values
must be scaled by the PGA factor shown in Table 5-2
for an MCE occurring in seismic Zone 3. The scal-
ing factor is 0.550 g; therefore:

S̃a = 0.550 ×K2Sa(5%) × 32.2 ft/sec2

POOL ELEVATION

NORMAL LOW

T1 0.585 sec 0.527 sec

β 12.33% 11.16%

K2 0.7388 0.7676

Sa(5%) 1.7094 g 1.8975 g

S̃a 22.37 ft/sec2 25.80 ft/sec2

C-13. Equivalent Lateral Earthquake Force
for Fundamental Mode, f1

f1
L̃1S̃a

M̃1g
(wsφ gp) constant × (wsφ gp)
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POOL ELEVATION

NORMAL LOW

L̃1 154.26 106.15

M̃1 40.34 32.74

S̃a 22.37 ft/sec2 25.80 ft/sec2

constant 2.657 2.598

for a sectiony-distance above the foundation, values
of f1 in (k/ft) are as follows:

gp f1

y wsφ NORMAL LOW NORMAL LOW

600
570
533
495
460
420
345
270
180
90
0

3.10
2.56
5.65
7.56
8.56
8.97
8.80
7.37
4.60
2.06
0

0
2.10
3.30
3.64
3.78
3.72
3.55
3.41

0
0.48
0.40
0.34

8.24
6.80

15.01
20.09
28.32
31.88
33.05
29.63
22.11
14.91
9.06

8.05
6.65

14.68
19.64
22.24
23.30
22.86
19.15
13.20
6.39
0.88

C-14. Equivalent Lateral Earthquake Force
for the Higher Modes, fsc

fsc

1
g











ws











1
L1

M1

φ










gp0

B1

M1

wsφ ag

ag/g PGA 0.550 g

fsc 0.550 ×










ws











1
L1

M1

φ










gp0

B1

M1

wsφ

gp0











gp0

wH
× wH











H
Hs

2

B1 0.2
Fst

g











H
Hs

2











gp0

wH
value from Figure C7 (for values ofy/H)

POOL ELEVATION

NORMAL LOW

L1 103.2 103.2

M1 32.74 32.74

H 2

Hs 0.681 0.202

H 2

wH Hs 21.03 3.40

Fst 7,645 2,274

B1 32.34 2.85
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Figure C-7. Standard mode shape and fundamen-
tal period for the dam on a rigid foundation and
empty reservoir. Chopra (1978)

C-15. Allowable Tensile Stress

Appendix B established the direct tensile strength of
the basic RCC mix to be:

f ′t = 290 psi (for the parent concrete)

f ′t = 205 psi (for the lift joints)

Because of the high strain rates associated with a
seismic event, the dynamic tensile strength is greater
than the direct tensile strength obtained from the lab
tests:

DTS = 1.5f ′t = 1.5 × 290 = 435 psi (for the parent
concrete)

DTS = 1.5f ′t = 1.5 × 205 = 307 psi (for the lift
joints)

In accordance with paragraph 4-3c, the allowable
tensile stress for a new RCC dam in seismic Zone 3
for the MCE load condition is:

ft(allowable) = 1.33 × 435 = 579 psi (for the parent
concrete)

ft(allowable) = 1.33 × 307 = 408 psi (for the lift joints)

C-16. Determining Stresses for the Earth-
quake Load Cases

a. The response of the dam to the design earth-
quake ground motion is obtained by applying the
equivalent lateral forcesf1 and fsc to the dam as static
loads, and performing a static analysis to determine
the tensile tresses. The lateral forcesf1 and fsc are
distributed forces in kips/ft. They are treated as
individual loading cases in the static analysis. As
discussed in paragraph 7-7, the stresses produced by
these forces represent maximum modal responses.
Thus, they must be combined by a statistical method.
The square root of the sum of the squares (SRSS)
method is used, and the maximum tensile stresses are
as follows:

ft σ2
1 σ2

sc

where

ft = maximum tensile stress due only to design
earthquake loading in a direction normal to
the lift joints (does not include hydrostatic or
dead load)

σ1 = tensile stress contribution of the fundamental
mode as produced by the statically applied
load f1

σsc = tensile stress contribution of the higher modes
as produced by the statically applied loadfsc

b. Two static analysis options are available for
determining the tensile stressesσ1 andσsc. The first
option is to consider the dam as a simple vertical
cantilever fixed at the foundation and loaded laterally
by the loadsf1 and fsc. The stressesσ1 andσsc are
simple bending stresses that can be hand calculated
by the beam bending formula Mc/I. The maximum
principal tensile stresses occurring at the downstream
face are then approximated by the following:

ft(max) σ2
1 σ2

sc sec2Θ σst sec2Θ
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where

ft(max) = the maximum principal tensile stress

Θ = the angle of the downstream face measured
from vertical

σst = stress normal to the lift joints caused by
static loads (hydrostatic, dead load of dam,
etc.)

The second option is to apply the lateral loadsf1 and
fsc to a finite element model of the dam, fixed at the
dam base, and perform a static analysis to obtain the
tensile stresses normal to the lift jointsσ1 andσsc,
and also the corresponding maximum principal tensile
stressesσ1(max) andσsc(max). The maximum tensile
stress normal to the lift joints is calculated by the
formula for f1 described above, and the maximum
principal tensile stress,ft(max), is calculated as follows:

ft(max) σ2
1(max) σ2

sc(max)

c. The second option will be used for this
example problem. The same finite element model of
the dam will be used as formulated in Appendix D to
analyze the example problem by the composite finite

element-equivalent mass system method. This will
allow a good comparison of the two different meth-
ods. Node points at the dam base, nodes 56
through 62, will be fully fixed for this analysis since
Chopra’s simplified method does not include model-
ing of the dam foundation. To load the finite element
model, the distributed lateral forcesf1 and fsc were
converted to concentrated lateral joint loads applied to
the appropriate upstream face node points. Note that
y = the distance above the foundation in feet coin-
cides with the node point locations of the finite ele-
ment model shown in Figures D-1 and D-2 of
Appendix D.

d. The static loads accompanying the earthquake
ground motion loading consist of the hydrostatic load
of the forebay on the upstream face and the dead load
weight of the dam. These loads are identical to those
calculated in Table D-2 and discussed in para-
graph D-12 of Appendix D for the composite finite
element analysis. However, since Chopra’s simpli-
fied method does not account for deformations in the
foundation, the static stressesσst andσst(max) for
Chopra’s method are different than those derived by
the composite finite element analysis.

e. The tabulations on the following pages show
the critical tensile stresses for the MCE load cases.

MCE Normal Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Upstream Face

Stress Normal to the Lift Joint (ksf, tension is +)

y σ1 σsc

Dynamic
Response
f1

Static
Stress
σst

Critical Tensile
Stress
(psi)

Percent
Overstressed

590
570
533
495
460
420
345
270
180
90
0

24.96
35.99
34.04
37.21
44.47
50.97
60.14
72.93
90.22

122.20
49.19

-16.16
-23.49
-20.77
-21.16
-25.23
-25.38
-25.69
-26.86
-26.54
-5.22
7.57

29.73
42.98
39.88
42.81
51.13
56.94
65.40
77.72
94.04

122.31
49.76

-1.55
-5.32

-11.39
-15.94
-21.63
-27.61
-35.89
-45.49
-53.62
-51.20
-14.20

196
262
198
187
205
204
205
224
281
494
247

----
----
----
----
----
----
----
----
----
21
----
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MCE Low Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Upstream Face

Stress Normal to the Lift Joint (ksf, tension is +)

y σ1 σsc

Dynamic
Response
f1

Static
Stress
σst

Critical Tensile
Stress
(psi)

Percent
Overstressed

590
570
533
495
460
420
345
270
180
90
0

24.39
35.20
32.93
35.46
43.95
49.12
54.77
63.01
73.96
94.48
36.71

-11.51
-16.78
-14.61
-14.81
-16.85
-16.60
-17.22
-18.85
-18.21
-0.38
6.17

26.97
38.99
36.03
38.43
47.07
51.85
57.41
65.77
76.17
94.48
37.22

-1.55
-5.31

-11.54
-16.47
-22.23
-28.80
-37.81
-49.40
-63.43
-75.90
-26.95

176
234
170
152
172
160
136
114
88

129
71

----
----
----
----
----
----
----
----
----
----
----

MCE Normal Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Downstream Face

Stress Normal to the Lift Joint (ksf, tension is +)

y σ1 σsc

Dynamic
Response
f1

Static
Stress
σst

Critical Tensile
Stress
(psi)

Percent
Overstressed

590
570
533
495
460
420
345
270
180
90
62

-12.57
-66.14
-28.88
-37.32
-48.38
-58.90
-67.59
-69.36
-58.51
-39.08
-12.65

8.22
42.51
18.29
22.07
24.90
22.75
15.47
5.99

-2.58
-5.49
-1.76

15.02
78.62
34.18
43.36
54.41
63.14
69.34
69.62
58.57
39.46
12.77

-1.53
-2.77
0.20
0.55

-0.12
-3.02
-7.89

-12.26
-14.43
-12.46
-6.37

94
527
239
305
377
418
427
398
307
188
44

----
----
----
----
----
2
5
----
----
----
----
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MCE Low Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Downstream Face

Stress Normal to the Lift Joint (ksf, tension is +)

y σ1 σsc

Dynamic
Response
f1

Static
Stress
σst

Critical Tensile
Stress
(psi)

Percent
Overstressed

590
570
533
495
460
420
345
270
180
90
0

-12.29
-64.53
-28.87
-36.55
-45.13
-51.52
-55.61
-54.69
-44.66
-29.18
-9.45

5.88
30.26
12.50
14.91
16.86
15.28
9.96
3.17

-2.71
-4.43
-1.43

13.62
71.27
31.46
39.47
48.18
53.74
56.49
54.78
44.74
29.51
9.56

-1.53
-2.72
-0.19
0.07
0.36
0.57
0.49
0.03

-1.38
-2.48
-3.14

84
476
217
275
337
377
396
381
301
187
45

----
17
----
----
----
----
----
----
----
----
----

MCE Normal Pool Load Case:
Critical Principal Tensile Stresses at the Downstream Face

Principal Tensile Stress (ksf, tension is +)

y σ1(max) σsc(max)

Dynamic
Response
f1(max)

Static
Stress
σst(max)

Critical Tensile
Stress
(psi)

Percent
Overstressed

590
570
533
495
460
420
345
270
180
90
0

13.09
76.19
49.78
63.24
79.09
94.33

111.10
112.70
95.51
64.46
16.50

8.56
48.90
31.11
36.74
39.67
35.75
25.71
9.90
7.40
9.96
2.91

15.64
90.53
58.70
73.14
88.48

100.88
114.04
113.13
95.80
65.22
16.75

-1.53
-3.15
-1.73
-2.14
-3.16
-6.48

-13.16
-20.42
-24.02
-21.27
-7.06

98
607
396
493
593
656
701
643
498
305
67

----
5
----
----
2
13
21
11
----
----
----
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MCE Low Pool Load Case:
Critical Principal Tensile Stresses at the Downstream Face

Principal Tensile Stress (ksf, tension is +)

y σ1(max) σsc(max)

Dynamic
Response
f1(max)

Static
Stress
σst(max)

Critical Tensile
Stress
(psi)

Percent
Overstressed

590
570
533
495
460
420
345
270
180
90
0

-12.80
-74.33
-49.43
-61.73
-73.50
-82.26
-91.19
-88.52
-72.64
-48.07
-12.24

6.12
34.80
21.34
24.79
26.79
24.03
16.71
5.70

-6.29
-7.89
-2.28

14.19
82.07
53.84
66.52
78.23
85.70
92.71
88.70
72.91
48.71
12.45

-1.53
-3.11
-1.82
-1.74
-1.55
-2.04
-3.45
-4.45
-6.12
-6.63
-3.15

88
548
361
450
533
581
620
585
464
292
65

----
----
----
----
----
1
7
1
----
----
----

C-17. Conclusions

The Chopra simplified method is used only for pre-
liminary design of new dams. Preliminary design
progresses to the point where it becomes apparent
that, with limited refinement, the final design will be
satisfactory. Refer to Figure C-8 which shows zones
where the basic RCC mix is overstressed. It appears
that use of superior mixes in these areas will lead to
a satisfactory final design. Final design uses a more
refined method such as the composite finite element
method demonstrated in Appendix D for this example

problem. The more refined methods allow for model-
ing and verifying the zones of superior concrete,
where this is not possible with the simplified method.

C-18. Comparison of Results

Paragraph D-16 compares the results of this analysis
using Chopra’s simplified method with the results of
the same example problem analyzed by the composite
finite element method.
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Figure C-8. Zones exceeding the allowable tensile stress for the basic RCC mix
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